foto-in-tour.ru

Как сделать реле времени своими

Как сделать реле времени своими

Примеры логических реле ABB CL, Eaton Easy и SIEMENS Logo!

Когда-нибудь каждый до этого доходит… когда понимает СКОЛЬКО реле надо поставить в щиток, чтобы реализовать какую-нибудь сложную логику управления освещением или другой автоматикой. И СКОЛЬКО надо возиться потом, позже, когда логику работы надо поменять. В Московской квартире в санузле у меня есть щиток на 24 модуля, в котором стоит аж (если мне не изменяет память) пять штук реле времени, из которых четыре — дорогущие CT-MFD. И это всё только для того, чтобы открывать-закрывать воду и управлять автоматикой фильтра воды. И каждый раз, когда мне надо поменять логику работы системы, я лазил в этот щиток с отвёрткой… стоя на унитазе ;).

И если у вас взрывался мозг, когда вы читали мыло от заказчика с текстом типа

«Хочу чтобы свет в гараже сам включался при открытии ворот на 20 минут. Но чтобы я нажал кнопку — и свет не выключался. А потом чтобы я опять нажал кнопку — и свет снова работал автоматически. А ещё потом я захочу сделать датчик движения, чтобы свет включался, если снаружи к гаражу кто-нибудь подошёл.»

…то вам пора, как и мне, переходить на другой способ реализации автоматики в щитах, нежели обычные релюшки.

Выходом из этого всего является то, что можно обозвать общим словом «Контроллеры», или детально «Логические реле» и «ПЛК«. Вот я вам про них и расскажу, чтобы описать всякие разные параметры и термины, которые в этой среде используются, ибо термины эти стандартные и понимая их смысл можно разобраться с любым контроллером любой фирмы.

И первое, что мы сделаем — это разберёмся с этим ёмким словом «Контроллер». Контроллер — это в принципе совершенно любая штука, которая чем-нибудь управляет. Можно сказать что выключатель — это ручной контроллер лампы. Или термостат тёплого пола — это контроллер тёплого пола. Сейчас на этом, так же как и на словах «умный дом» начали делать деньги, поэтому ими называют любую продукцию — от датчика движения до мощного сервака, который управляет целым районом или коттеджным посёлком.

Терминология и виды контроллеров.

Пример ПЛК SIEMENS Simatic S-200

Для нашей технической области можно описать терминологию и эволюцию систем таким образом:

  • Микроконтроллер — это микросхема с её обвязкой, которую ты сам паяешь паяльником и пишешь под него прошивку на СИ или Ассемблере. Обычно микроконтроллер — это низковольтная штука, которая удобна для управления низковольтными устройствами и интерфейсами. Например можно сделать какие-нибудь термометр-часы или светодиодное табло. Можно сделать кодовый замок с текстовым дисплеем или систему управления аквариумом.
    В любом случае придётся брать паяльник, блок питания и обвешивать систему релюшками или тиристорами для коммутации нагрузок. А самое для нас неприятное — это то, что такую систему не воткнуть в щиток на DIN-рейку. Для неё надо будет придумывать какой-нибудь корпус (потому что негоже голой печатной плате торчать в щите среди «толстых» силовых проводов) и крепить её на какую-нибудь монтажную панель…
    Поэтому микроконтроллеры занимают совсем другую нишу. Они или стоят в уже готовых устройствах (бытовая техника и прочее подобное), или же на их базе делают другие контроллеры, в которых микроконтроллер и его обвязка собраны в единую конструкцию.
  • Микрокомпьютеры обычно решают более брутальные задачи, потому что имеют адские вычислительные мощности по сравнению с микроконтроллерами. Но их опять не запихнёшь просто так в обычный щиток и не заставишь их управлять силовыми нагрузками. Да и городить компьютер ради управления светом в гараже (из примера выше) — это жёстко =)
  • Специализированные контроллеры и разработки. Это когда какой-нибудь производитель на базе микроконтроллера или микрокомпьютера взял и разработал своё устройство. Чаще всего мы, не зная этого, как раз такими устройствами и пользуемся. Все наши реле напряжения, реле времени, реле приоритета, всякие анализаторы качества сети, регистраторы, контроллеры АВР или блоки управления реле по SMS — как раз такие разработки.
    Но беда в том, что исходный код контроллеров, конечно же закрыт от нас и изменить логику работы таких устройств мы можем, крутя только внешние настройки, которые нам предоставил разработчик. И если например нам надо сделать переключение фаз с задержкой — то нам придётся покупать отдельные реле времени и ставить их после заводского переключателя фаз.
    Это плохо, но эти устройства самые дешёвые, потому что их производят массово. Если бы такое устройство надо было бы делать штучно под каждую задачу — то оно стоило бы безумных денег! И вот люди подумали, и…
  • …скрестили микроконтроллер с корпусом на DIN-рейку и возможностью его программировать без знания ассемблера, СИ и паяльника! Получилось Логическое реле (показаны на заглавной фотке поста). Что для нас представляет собой микроконтроллер? Это некая микросхема, у которой есть разные служебные выводы (питание, тактовая частота, управление, интерфейсы связи) и несколько ножек, которые можно сконфигурировать программно как входы или выходы. А потом написать программу, которая ими управляет как нам надо.
    Логическое реле — это то же самое, только в более суровом масштабе. Это некий корпус, который крепится на DIN-рейку и имеет некоторое количество входов и выходов. Написав программу, мы можем так же управлять выходами по разным сигналам на входах.
    Логическое реле хорошо годится, когда надо автоматизировать простые задачи, чаще всего дискретные вида «включить, подождать, если не … то выключить». Как раз пример света гаража прям идеален для логического реле. Но когда надо обрабатывать тучу данных с большой скоростью и рулить разными приводами или общаться с техникой по удалённым каналам связи, то мощности и ресурсов логического реле уже не хватает. И тут нам нужен…
  • Прогаммируемый логический контроллер (ПЛК). Это уже фактически полноценный компьютер, только со своей собственной внутренней операционной системой, которая привязана к конкретному железу ПЛК и его периферии. Если логическое реле программируется чаще всего блок-схемами, «кубиками», то ПЛК программируется обычно текстовой программой (похожей на язык СИ), которая компилируется и загружается в ПЛК.
    ПЛК обычно имеет несколько интерфейсов связи (RS-485) при помощи которых он может управлять кучей разных устройств, получаяя и посылая на них разные данные. ПЛК нужен там, где надо иметь много линий ввода-вывода или где надо иметь большую производительность или такие функции, которые не сделать на логическом реле. Логическое реле чаще всего можно программировать прямо с него же самого при помощи кнопок и экранчика. А вот для ПЛК понадобится компьютер и специальная среда разработки.

Что есть внутри? Ресурсы, IO, интерфейсы.

Ввод-вывод (IO). Это то, посредством чего к контроллерам можно подключать разные внешние устройства: кнопки или датчики, и то, при помощи чего контроллер управляет этими устройствами: лампами, двигателями, обогревателями, насосами.

Входы бывают низковольтными или высоковольтными. Низковольтные входы обычно бывают у контроллеров, которые сами питаются от низкого напряжения (+12, +24 вольта). Такие входы хороши тем, что они чувствительны к слабым сигналам (на них можно прицепить выход с хилого электронного датчика — например мы в одном из щитов подключили датчики протечки от системы «Нептун» к ПЛК) и безопасны. Так же низковольтные входы часто быают не цифровыми, а например для измерения температуры и аналоговых сигналов 4..20 мА или 0..10 вольт.

Если мы хотим подать на низковольтные входы сетевое напряжение, то нам надо будет городить какие-нибудь преобразователи уровня: оптопары или промежуточные / интерфейсные реле.

Высоковольтные входы чаще всего бывают у контроллеров, которые питаются непосредственно от сети 230V. На такие входы можно подавать то же напряжение сети, от которого контроллер и питается. Эти входы (и контроллеры с сетевым питанием) удобны для решения простых задач, где мы управляем силовыми нагрузками сразу. То-есть для наших силовых щитов с автоматикой.

Выходы бывают релейные или транзисторные. Релейный выход самый удобный: внутри контроллера стоит мелкое реле, которое замыкает свои контакты по команде с программы в контроллере. А уже при помощи этих контактов мы можем делать что угодно. Только не забывайте, что реле эти чаще всего рассчитаны на ток в 1..3 ампера для ПЛК и в 6..8А для логических реле! То-есть, коммутировать ими можно или катушку более мощного контактора или пяток ламп (одну группу освещения).

Это делается из-за того, что производитель контроллера не знает чем этот контроллер будет управлять. Если он поставит два десятка силовых реле — то размеры контроллера будут огромные. Поэтому как раз и поступают наоборот: ставят много хилых реле, а там уже разработчик сам решит, где ему штатных реле хватает, а где надо более мощные ставить.

Транзисторный выход чаще всего характерен для низковольтных контроллеров. Внутри контроллера стоит транзистор, который замыкает нужную ножку выхода на GND (минус, землю) питания. При помощи транзистора можно переключать выход с большей скоростью, чем у реле. А можно снова взять интерфейсные реле на больший ток и понавесить их на такие выходы.

Количество линий IO обычно распределяется так:

  • У логического реле будет немного входов (8..12..20) и совсем немного выходов (4..6..12..20). Чаще всего тут доступны модели с высоковольным питанием (и высоковольтными выходами). Штатно у реле может быть 8 входов и 4 выхода, а остальные добавляются при помощи специальных модулей расширения.
  • У ПЛК IO может быть много, или же вообще никакого. Варианты бывают такие:
    Много (десятки) входов и выходов, но слабеньких: низковольтных и с реле на 1..3А;
    Немного (4..8) входов и выходов тоже слабеньких;
    Без IO на борту. Всё IO реализуется внешними модулями через интерфейс RS-485. И при помощи модулей IO набирается в любом количестве, лишь бы хватило памяти и ресурсов.

Штатно логическое реле задумано для небольших применений и поэтому у него мало IO и есть трудности с его расширением. А ПЛК сразу задуман как сердце большой системы, и поэтому изначально может быть заточен полностью под внешнее IO.

Пример ПЛК ОВЕН ПЛК-110

Ресурсы программы. Память.

Память внутри контроллера не бесконечна и имеет свои размеры. Если речь идёт о логическом реле — то там «память» чаще всего измеряется в количестве внутренних блоков: например до 16 таймеров, до 8 счётчиков и до 128 соединений «релейной схемы». Или же до 200 блоков в блок-схеме (FBD). Когда мы создаём программу в контроллере или среде разработки, то они нас и предупредят о том, что память кончается.

У ПЛК память обычно измеряется как в компьютерах — в килобайтах, мегабайтах и прочем. Скажем, в ПЛК может быть 4 мегабайта для памяти программы, 300 кб для памяти ввода-вывода и 1 мегабайт памяти переменных. Память ввода-вывода определяет максимальное количество всяких внешних модулей ввода-вывода (внешнее устройство занимает некоторое количество этой памяти ввода-вывода). Размер использованной памяти в ПЛК нам скажет компилятор среды разработки. И он же предупредит нас, если мы не укладываемся по ресурсам в выбранный ПЛК.

Retain-переменные.

Функционал Retain-переменных или параметров есть почти в каждом логическом реле или ПЛК. На самом деле всё просто: речь идёт о сохранении каких-нибудь значений программы между выключением питания контроллера. Это то, что в микроконтроллерах назвалось FLASH-память, куда программно можно было записать какие-нибудь байтики.

В контроллерах можно сохранить какой-нибудь флаг (вкл-выкл) или целый счётчик (для того, чтобы например считать общее время наработки устройства или импульсы от счётчиков воды). Обычно всё проще простого. Для логических реле часто достаточно поставить галочку, которая будет называться Retain или Retentivity:

Пример настройки Retain-переменных в Siemens Logo

А в ПЛК например надо завести нужные переменные в разделе «Retain». Например вот тут я считаю импульсы со счётчиков воды и сохраняю их количество между отключениями питания ПЛК.

Пример настройки Retain-переменных в CodeSys

Retain-переменные в ПЛК можно сделать любые, а в логических реле их список может быть ограничен всего несколькими объектами. Например таймеры с 6 по 10 могут сохранять свои значения, а таймеры с 1 по 5 не могут. Всё это тоже надо учитывать при разработке таких систем.

Таймеры, Счётчики, Часы.

В контроллерах обычно есть несколько счётчиков и таймеров, при помощи которых можно выдавать всякие импульсы, делать задержки или просто считать входные сигналы (число деталей, число нажатий на кнопку и прочее). Как я уже писал выше, некоторые из них можно настроить так, чтобы они сохраняли насчитанное между отключениями питания контроллера.

Ещё в контроллерах есть часы реального времени. Эта фича может не всегда быть в контроллере и являться опцией. Например в логических реле Eaton Easy/ABB CL то, что внутри есть часы, обозначается буковкой «C» в маркировке контроллера. С часами контроллер легко можно запрограммировать на то, чтобы он давал школьные звонки или в нужное время включал и выключал освещение, насосы, отопление и прочие нагрузки.

Интерфейсы.

Вот тут всё делится на несколько фронтов. Если мы ведём речь о каком-нибудь специализированном контроллере, например CCU825 (это GSM-контроллер для управления разными нагрузками по SMS), то там внешние интерфейсы будут такими, какими их предусмотрел производитель. Могут быть Ethernet, RS-232, RS-485 или USB. А может быть вообще какой-нибудь свой интерфейс для подключения своих датчиков.

Если мы ведём речь о логических реле, то в самых дешёвых и простых моделях вообще нет способов связи этого реле с внешним миром. В логических реле покруче сейчас уже появляется интерфейс Ethernet (например в Siemens Logo! 8 версии) или даже специальные модули расширения для связи через GSM. В тех же Siemens Logo! 8 вообще есть встроенный WEB-сервер.

В ПЛК сейчас стандартом является один или несколько интерфейсов RS-485 и интерфейс Ethernet. А дальше в ПЛК будет то, что мы напишем и что подключим. В том числе и WEB-сервер придётся самому писать или использовать какую-нибудь библиотеку из имеющихся в сети.

Про интерфейс RS-485 я расскажу чуть позже.

На чём программируют контроллеры?

В этой сфере есть несколько стандартных языков и даже сред разработки. Я кратенько по ним пройдусь, чтобы все были в курсе того, чего ждать от логического реле или ПЛК.

Релейно-контактная схема (LAD, Ladder Logic).

Это самый удобный язык для тех, кто раньше делал схемы на обычных релюшках. Потому что этот язык как раз и описывает обычные релюшки, которые могут быть разного типа (реле с самоблокировкой, реле времени, с нормально замкнутыми контактами, с нормально разомкнутыми) и которые срабатывают, когда на них подают питание.

В этом случае мы рисуем схему так же, как её и представляем. Вот например у меня тут какая-то тестовая схема завалялась. Смотрите как всё просто: если замкнулась кнопка I01, то включилось (S) реле Q01. Если замкнулась кнопка I02, то отключилось реле Q01. Это у нас аналог обычного реле с самоблокировкой.

Пример программирования контроллеров на языке LAD

И разница только в том, что все эти реле — не физические, а находятся внутри контроллера. Поэтому взяв какой-нибудь контроллер, вы можете перенести туда вашу схему почти без потерь, а потом уже наворачивать функционал. Например вот тут мы с одним камрадом постебались и сделали схему управления освещением ванной на контроллере, которая заменила адски дорогие импульсные реле с центральным управлением.

Такой способ программирования удобен для логических реле, потому что на ПЛК такими схемками много не напрограммируешь. Самые простые логические реле, в которых используется LAD — это реле Eaton Easy / ABB CL, про которые я самыми первыми и буду рассказывать позжее.

Язык FBD (Functional Block Diagram).

Но если вы раньше хорошо возились не с обычными релюшками, а с цифровыми микросхемами (например я в детстве не вылазил из серии K155), то вам по душе будет язык FBD. Вот просто посмотрите на схему:

Пример программирования контроллеров на языке FBD

Это ж те же самые логические элементы, которые в цифровой логике и приняты! Триггеры, И, ИЛИ, НЕ, Исключающее Или и всякие мульти- или одновибраторы. В этом случае «программа» чертится в виде большой цифровой схемы. Таким способом программируются логические реле Siemens Logo и например логические реле от ОВЕН’а.

Текстовый язык (ST, IL).

Ну а если вы столкнулись с ПЛК — то там обычно логика сложная, и работать надо не с битами (1/0), а с разными числами: посчитать, сложить, перевести в другие единицы или вообще HTTP-протокол разбирать на составные части. В этом случае можно использовать обычный программный текст, где программа пишется так же, как на СИ или Pascal. Вот кусок кода, где я на коленке накатал защиту от протечек:

Пример программирования контроллеров на языке ST

Для меня это даже нагляднее, чем FBD или LAD. Потом такой код компилируется и заливается в ПЛК, где и исполняется.

Как работают контроллеры?

Контроллеры, про которые мы говорим (а именно Логические реле и ПЛК) работают по одной и той же системе. Наша программа, которую мы туда загрузили, выполняется в цикле много-много раз за секунду.

Для контроллеров даже есть такое понятие как «Задача» — это какой-нибудь кусок программы, который надо выполнять через определённые промежутки времени. В Логическом реле задача всегда одна, а в ПЛК можно насоздавать много задач, которые будут исполняться почти одновременно. Скажем, одна задача будет принимать информацию с датчиков и записывать её во внутренние переменные кода, а другая просто рисовать на экране менюшки и картинки, используя значения из переменных от первой задачи. Экран можно заставить обновляться каждые 100 мс, а датчики опрашивать каждые 20 мс.

В любом случае программа работает таким образом: считываются состояния входов и сигналов. После этого контроллер последовательно вычисляет всю нашу схему и получает сигналы для выходов. И по этим подсчитанным сигналам он выключает нужные выходы. Другими словами, вся наша схема на LAD или FBD на самом деле обсчитывается как несколько логических выражений типа Q1 = I1 AND (NOT I2).

Как именно контроллер будет обсчитывать схему — не совсем известно. Поэтому в некоторых случаях на сложных схемах могут возникать так называемые «гонки во времени»: когда один участок схемы подсчитался быстро, а второй медленно и из-за этого мы получили на выходе глюки.

Программа в контроллере не обязательно будет работать сразу при подаче питания на него. Её можно останавливать и запускать вручную. Запускаться автоматически при включении контроллера она будет только если вы сами это настроите. А в самой программе можно даже задать значения выходов, которые надо включить при остановленной программе или потере связи (это называется «безопасные значения выходов»).

Интерфейс RS-485 и протокол ModBus.

Теперь поговорим о суровом ломе и основе основ всех ПЛК и промышенной автоматики. Это интерфейс RS-485. Он является стандартом для подключения всякого внешнего оборудования и связи его между собой. Не надо путать интерфейс с протоколом: RS-485 описывает уровни электрических сигналов и тип кабеля, по которому они передаются. А вот ЧТО именно передаётся — интерфейсу уже не важно.

Протокол — это некая программная обёртка, которая описывает уже именно то, что в каком случае значат конкретные байтики, которые передаются между устройствами. И вот протоколов, основной которых является RS-485, много. Это например известенейший протокол DMX-512 для управления сценическим освещением и интересный для нас протокол ModBus, при помощи которого между собой и связываются ПЛК и внешние устройства.

Протокол ModBus — это тоже самый распространённый стандарт обмена данными между устройствами и контроллерами. Действует он просто и достаточно легко. У каждого устройства есть свой адрес (от 1 до 128, кажется), по которому из него можно прочитать данные или записать данные из нужного места памяти. В сети есть главное устройство (Master) и подчинённые, которые исполняют его команды «Запиши ххх», «Прочитай ххх». И всё!

В ModBus места памяти, которые читаются или записываются в устройствах, называются «регистры». У них тоже есть свои адреса, которые называются номерами. Что в каких регистрах хранится, полностью зависит от конкретного устройства и фантазии производителя. Типы регистров могут быть такими:

  • BYTE — один байт (8 бит)
  • WORD — два байта (16 бит). Ещё называется «Register»
  • DWORD — четыре байта (32 бита).
  • REAL — число с плавающей точкой
  • STRING — строка текста

Полная адресация на шине ModBus может быть такой:

  • Устройство, адрес 1
    • Регистр BYTE, номер 20
    • Регистр REAL, номер 30
    • Регистр REAL, номер 30
  • Устройство, адрес 2
    • Регистр BYTE, номер 20
    • Регистр BYTE, номер 30
  • Устройство, адрес 5
    • Регистр BYTE, номер 1
    • Регистр BYTE, номер 2
    • Регистр BYTE, номер 3
    • Регистр BYTE, номер 4

Теперь соберём краткие знания вместе. Чтобы обмениваться данными между ПЛК и другими устройствами, есть протокол ModBus, который построен на интерфейсе RS-485. Обычно ПЛК является главным устройством (мастером сети). В эту сеть подключаются другие внешние устройства. Настройки сети (скорость обмена, тип протокола) выставляются одинаковыми для всех устройств. Каждому устройству даётся какой-нибудь адрес.

Дальше мы не сможем ничего сделать без документации на устройство. В ней будет написано примерно следующее:

  • Регистр #100. Один байт. Состояние выходов 1..8.
  • Регистр #101. Один байт. Состояние выходов 9..16.
  • Регистр #200. Два байта. Состояние входов 1..16.

Всё это прописывается в программе ПЛК, после чего ПЛК опрашивает все эти устройства и собирает нам все их данные. Понятно, что адреса устройств не должны меняться, потому что сами устройства являются составной частью системы и программы.

Что есть такого, что управляется по RS-485/ModBus? Да почти всё. Я сам многого не знаю, поэтому приведу примеры из того, о чём слышал:

  • Модули ввода-вывода. Вы можете прикупить модули и сделать очень много входов и выходов для своего контроллера. Их количество ограничено тормозами ModBus (когда он не будет успевать их опрашивать) и размерами памяти ввода-вывода контроллера. Именно поэтому некоторые ПЛК выпускаются совсем без IO на борту — разработчик сам добавит нужные внешние модули.
  • Счётчики электроэнергии. К счётчику, если он это поддерживает, можно подключиться по ModBus и снимать с него кучу разных параметров сети. Единственное — счётчик придётся ставить свой собственный, потому что энергосбыт не позволит подключать что-либо к тому счётчику, по которому идёт оплата за электричество.
  • Дисплеи и текстовые табло.
  • Измерители параметров сети и других данных. Например, у ABB есть крутая система измерения токов по каждой линии отдельно — CMS. А отдаёт она все данные как раз по ModBus.
  • Управление освещением, приводами и прочим

Так что если вы слышите RS-485, то следующим вопросом должно быть, поддерживает ли устройство протокол ModBus и есть ли документация по его регистрам!

Особенности конструкции

Самое главное, что надо запомнить в мире контроллеров — это то, что фраза «Устанавливается на DIN-рейку» не всегда означает то, что контроллер встанет в обычный щиток и нормально закроется пластроном. Большая половина контроллеров и всякой промавтоматики действительно устанавливается на DIN-рейку, но только для их крепления.

Поэтому выбирая контроллер надо проверить, влезет ли он в обычный щиток, или под него придётся городить монтажную панель!

Как и чего выбирать?

Ну и подводим итоги, которые называются так: «Зная о том, какие контроллеры бывают, думайте своей головой». То, какой контроллер выбирать, можно понять если рассортировать задачи, которые мы собираемся решать на них:

  • Заменить рассыпуху из кучки реле в силовом щите, где линий вывода мало. Например, какую-нибудь систему управления приводом ворот. Там будет много входов (кнопки, концевики, датчики тока мотора) и немного выходов (мотор вперёд, мотор назад, лампочка аварии).
    Или же сделать схемку, куда приходит сигнал с реле освещения, датчика движения, кнопок и которая управляет уличным освещением по часам, нахождению людей и освещённости.
    В этом случае наш друг — логическое реле. Оно будет стоить недорого, в некоторых случаях его можно запрограммировать прямо при помощи кнопок и экрана без использования среды разработки и кабеля. А так как его выходы обычно тянут ток в районе 6 ампер, то какое-нибудь освещение небольшой мощности можно включать напрямую без контактора.
  • Управлять оборудованием (автополив, отопление, АВРы и т.д). Тут всё зависит от того, уложимся ли мы в то количество линий ввода-вывода, которое есть у логических реле. Например, реле от Eaton могут дать нам всего лишь 24 входа и 12 выходов, а Siemens Logo — 24 входа и 16..20 выходов.
    Если мы не укладываемся в такое количество линий IO, то начинаются проблемы. Некоторые логические реле можно соединять между собой каскадом, чтобы расширить количество IO. Но иногда по деньгам это получается даже дороже ПЛК и занимает много места.
    Так что в этом случае иногда приходится переходить на ПЛК. Например, вот хотим мы закинуть в контроллер 50 групп света, чтобы заменить импульсные реле. И фиг вам сделать это на логическом реле — придётся ставить ПЛК, потому что IO не хватит.
  • Управлять оборудованием по RS-485/ModBus, иметь много линий ввода-вывода или сложную логику программы (WEB-интерфейс, аналоговые вычисления, сбор данных). Тут сразу нужен ПЛК, потому что решать такие задачи на логических реле будет тяжело.

Ну и конечно же, если наша задача сводится к тому, чтобы при помощи СМСок или WEB-интерфейса включать и выключать четыре релюшки — лучше сразу использовать готовые решения, которых много на рынке. В этом случае всё будет работать «из коробки» и вам не придётся ничего программировать.

Сейчас я нахожусь в форме существования «ЗАДОЛБАЛО». По разным причинам всякие решения по автоматике управления светом, АВРами, распределением питания или разной автоматикой меня не устраивают. Ограничивать себя, составляя кривые конструкции из релюшек разных фирм или кулибинствовать с паяльником я не хочу. Поэтому я ухожу в контроллеры и свои шкафы буду делать теперь на них.

Мои разработки будут управлять питанием всего дома/коттеджа. На них можно будет повесить управление генератором, инвертором или приводами ворот и рольставен. То-есть щит будет центром всей домашней автоматики. А дом при постановке на охранку будет сам понимать, что где отключить, закрыть и надо ли сразу включать генератор или поработать часа три на инверторе, раз там никто не живёт.

Когда я отработаю свои решения, то я буду продавать их отдельно для других сборщиков щитов. Вот так! А для нашей аудитории напишу несколько постов про контроллеры и могу сделать платный мастер-класс по простым контроллерам для начинающих.

Если вас заинтересовала информация из этого поста и вы хотите со мной связаться (или заказать Сборку щита / Консультацию/Мастер-Класс), то пишите мне на почту или звоните на +7-926-286-97-35 (c 10 до 20 по Москве). На SMS и почту, написанную в одну строчку, я не отвечаю. Отзываюсь на имя Электрошаман.
Невнимательных, тупых и наглых продаванов и менеджеров я буду жёстко стебать, если они не заглянут в инфу про контакты для организаций, а скорее кинутся звонить.

Реле времени на 220 вольт своими руками фото
Реле времени на 220 вольт своими руками 46
Реле времени на 220 вольт своими руками 90
Реле времени на 220 вольт своими руками 16
Реле времени на 220 вольт своими руками 46
Реле времени на 220 вольт своими руками 14
Реле времени на 220 вольт своими руками 39
Реле времени на 220 вольт своими руками 32
Реле времени на 220 вольт своими руками 21
Реле времени на 220 вольт своими руками 100
Реле времени на 220 вольт своими руками 94
Реле времени на 220 вольт своими руками 28
Реле времени на 220 вольт своими руками 19
Реле времени на 220 вольт своими руками 80
Реле времени на 220 вольт своими руками 5
Реле времени на 220 вольт своими руками 61
Реле времени на 220 вольт своими руками 92
Реле времени на 220 вольт своими руками 30
Реле времени на 220 вольт своими руками 3
Реле времени на 220 вольт своими руками 22
Реле времени на 220 вольт своими руками 10
  • Вышивка крестом риолис фото
  • Как можно украсить альбом для фотографий своими руками
  • Шаблоны розы для вышивки
  • Прикольное поздравление с днем рождения от семьи
  • Изделия из павлопосадских платков своими руками выкройки
  • Открытка с рождением дочери распечатать